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Cities seek nuanced understanding of intraurban inequality in
energy use, addressing both income and race, to inform equitable
investment in climate actions. However, nationwide energy con-
sumption surveys are limited (<6,000 samples in the United States),
and utility-provided data are highly aggregated. Limited prior analyses
suggest disparity in energy use intensity (EUI) by income is ∼25%,
while racial disparities are not quantified nor unpacked from income.
This paper, using new empirical fine spatial scale data covering all
200,000 households in two US cities, along with separating
temperature-sensitive EUI, reveals intraurban EUI disparities up
to a factor of five greater than previously known. We find 1) annual
EUI disparity ratios of 1.27 and 1.66, comparing lowest- versus
highest-income block groups (i.e., 27 and 66% higher), while previous
literature indicated only ∼25% difference; 2) a racial effect distinct
from income, wherein non-White block groups (highest quintile
non-White percentage) in the lowest-income stratum reported
up to a further ∼40% higher annual EUI than less diverse block
groups, providing an empirical estimate of racial disparities; 3)
separating temperature-sensitive EUI unmasked larger disparities,
with heating–cooling electricity EUI of lowest-income block groups
up to 2.67 times (167% greater) that of highest income, and high
racial disparity within lowest-income strata wherein high non-
White (>75%) population block groups report EUI up to 2.56 times
(156% larger) that of majority White block groups; and 4) spatial
scales of data aggregation impact inequality measures. Quadrant
analyses are developed to guide spatial prioritization of energy
investment for carbon mitigation and equity. These methods are
potentially translatable to other cities and utilities.

fine spatial scale data | intraurban analysis | energy use inequality |
social inequity in energy intervention investment

Cities have become a key action arena for carbon mitigation,
with the US Mayors’ Climate Protection Agreement launched

in 2005 and the inclusion of cities in the 2011 United Nations
Climate Change Conference. More recently, cities have also
started to address equity in their carbon mitigation plans (1, 2).
For example, in the United States, New York City and Boston
have begun to evaluate social inequality in energy use to inform
more equitable distribution of energy-related investments (e.g.,
efficiency rebates) (3–7). To inform equity, cities are seeking
methods and metrics that advance a more nuanced and fine-scale
understanding of inequality in energy use and in investments,
addressing both race and income.
Here, we distinguish between social inequality and inequity.

Social inequality metrics quantify differences in any parameter
of interest based on social stratification (8). Some inequality
metrics, such as those representing income inequality, assess
inequality across the whole population (or surveys representing
the population), using the Gini coefficient (9–11) and interquantile
income ratios (e.g., P80/P20). Other inequality metrics, such as
those used in public health, compute health risk disparity ratios
by race, gender, or income (12). Social equity goes beyond in-
equality to evaluate the fairness in allocating resources (e.g., energy

assistance or health care investments) among different groups to
reduce social inequality with a focus on reducing disparities for the
most disadvantaged strata in society (8, 13, 14). Thus, the analysis of
inequality guides the distributional aspect of social equity (13, 15),
that is, the distribution of burdens and benefits across social strata.
Social equity also includes a procedural dimension related to the
agency and participation of disadvantaged groups in decisions that
impact them (16).
This paper focuses on distributional equity. Cities face four

main challenges, described below, in quantifying social inequality
in energy use to inform more equitable investments in energy
conservation and efficiency.

1. Lack of fine-scale empirical data across a whole city: There
have been relatively few analyses of energy use inequality and
investments using empirical data (i.e., data provided by utilities)
at fine spatial scales within cities to inform equity. A few efforts
that explore inequality in intraurban energy use have primarily
relied on modeled energy use (17, 18) using the US Energy
Information Administration’s Residential Energy Consumption
Survey (RECS). RECS only surveys some thousands of homes
nationwide (e.g., ∼5,700 in 2015 and ∼12,000 in 2012), resulting
in scattered coverage within 10 census divisions, each covering
five states on average (19). Consequently, modeled intraurban
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energy use derived from RECS reports a goodness of fit of
∼60% (17, 18), which can mask social inequality at the fine
spatial scale within cities where social stratification by race and
income manifests spatially. Thus, empirical data from utilities
are much needed, at least at the block group level, which is the
finest scale at which sociodemographic data on race and in-
come are reported by the Census Bureau. Furthermore, to
inform equity, data on energy conservation and efficiency pro-
gram participation and investment across the whole city are
needed to evaluate the allocation of investments across all
neighborhoods in a city. However, only a few cities such as
Los Angeles (20) have obtained fine-scale energy use data from
utilities to evaluate inequality in energy use covering the whole
city. Likewise, only a few studies have explored social inequality
in investment in energy conservation and efficiency at the intra-
urban scale (21, 22). No previous study has evaluated both in-
equality in energy use and inequity in energy investments at
intraurban scales.

2. Lack of analysis of disparities in energy use and intensity by
both race and income: No previous studies have explored
disparities in energy use and intensity by both race and in-
come using real intraurban consumption data. For example,
Los Angeles (20) evaluated energy inequality at a fine spatial
scale by income but not by race (23, 24). Only two previous
studies addressed intraurban racial disparities in heating en-
ergy use intensity (EUI) using modeled data from RECS (17,
18); however, there is high uncertainty in RECS-derived
models given the small survey sample sizes noted earlier.

3. The challenge of spatial scale of data aggregation: When util-
ities provide intraurban energy usage data to cities, these data
are aggregated at different spatial scales, with unknown im-
pacts on energy inequality metrics such as disparity ratios and
Gini coefficients. Spatial scales of data aggregation range
from the most disaggregated premise level to census blocks
(∼76 person on average in the United States), census tracts
(1,200 to 8,000 persons), and ZIP (Zone Improvement Plan)
code (with an average of ∼8,000 people). For example, several
municipal utilities analyze premise-level data for their city pol-
icymakers [e.g., Tallahassee (25), Los Angeles (20), and others
(26)]; St. Paul, Minnesota has census tract–level data provided
by the local utility (27), while California cities have ZIP code–
level data (28) complying with state-level regulations on data
privacy provided by utilities. The spatial scale of data aggregation
can impact the analysis of dispersion, recognized in geography
and public health as the modifiable areal unit problem (29, 30).
However, this modifiable unit area problem has not been system-
atically analyzed for energy use inequality due to the lack of
both energy use data and sociodemographic data at fine spatial
scales. Assessing how the spatial scale of data aggregation im-
pacts energy inequality measures is important, given that differ-
ent utilities are spatially aggregating data at different scales for
subsequent analysis by cities.

4. Suitable energy use metrics and analysis procedures to inform
equity: Even when city-wide fine-scale energy use data are
available, there are few analysis protocols and metrics to eval-
uate intraurban equitable distribution of investments in con-
servation and efficiency. While metrics to assess inequalities
in energy access, energy burden (i.e., percentage of income
spent on energy services), and energy use are well developed
(1, 2, 31–36), energy use metrics that best represent the impact
of energy conservation and efficiency investments are still
evolving. Energy use metrics, such as household energy use
(kilowatt hour/household a year), energy use per capita [kilowatt
hour/person a year (36)], and household energy use intensity by
floor area [kilowatt hour/square feet a year (17, 18)] have been
used, but all have challenges. Studies have shown that high-
income households have a higher energy consumption primarily
due to having larger homes (37). These high-income households

are also found to be more “efficient,” showing lower EUI (18,
23). Thus, only tracking total energy use per household will
primarily represent floor area effects but not the efficiency of
building stock. EUI has more potential to reflect the condition
of the building stock and the efficiency of heating and cooling
appliances; however, low-income homes may conserve energy by
sacrificing thermal comfort, experiencing energy insufficiency
(36). Thus, a lower EUI does not necessarily represent more
efficient provision of thermal comfort for low-income homes.
Housing stock occupancy can also influence EUI, which can be
normalized by household size (38), that is, EUI/capita, to cap-
ture the impact of occupancy. A better understanding of floor
area, along with total household energy use, housing occupancy,
and thermal comfort in conjunction with EUI, is needed to
develop suitable inequality metrics for energy use. In addition
to exploring appropriate energy inequality metrics, there are
no analysis protocols to apply those metrics to inform conser-
vation and efficiency investments toward the triple goals of
community-wide carbon mitigation, improving energy afford-
ability (reducing burden), and reducing social inequality in
energy use and intensity.

To address the above challenges, our paper makes three key
contributions. First, we develop a unique intraurban fine-scale
dataset, combining sociodemographic data with energy use, oc-
cupancy, program participation, and investment data covering all
homes/neighborhoods across two cities. Second, using the em-
pirical fine-scale data (suitable to unpack race and income ef-
fects), we explore metrics for cities to quantify social inequality
in energy use by both income and race and apply those to inform
social equity in energy sector investments in conservation and
efficiency (ESICE), for example, efficiency rebates, loans, etc.
Our study brings together inequality both in energy use and in
efficiency investments at the intraurban scale. Third, with the
availability of fine-scale data, we provide an assessment on how
energy use inequality metrics are impacted by the spatial scale of
data aggregation. Overall, this work informs how cities and
utilities can gather and analyze information on energy inequality
to guide ESICE to advance social equity and carbon mitigation.
The analytical tools demonstrated in two cities in this paper are
potentially translatable to other cities and utilities.
Fine-scale data (block group or finer) on both residential en-

ergy use and ESICE across the entire city for Tallahassee, Florida,
and St. Paul, Minnesota, are obtained through partnerships with
electric utilities under nondisclosure agreements to preserve data
privacy, consistent with state and federal regulations. Data were
provided at the premise level for Tallahassee’s ∼90,000 households
with 1 y monthly energy use and 5 y investment data and at the
block level for St. Paul’s ∼110,000 households with 1 y monthly
energy use and investment data. The energy investment data
include various efficiency programs (e.g., efficiency rebates,
home energy use analysis, etc.; SI Appendix, Table S1). Investments
in household-scale renewable energy programs, for example, rooftop
solar panels, are not within the scope of this study, which focuses
on ESICE.
The overall method is shown in SI Appendix, Fig. S1, wherein

the fine-scale database incorporates social, ecological, infra-
structural, and urban form variables, consistent with urban systems
frameworks (39).
The inequality metrics used in this study include Gini coeffi-

cients and disparity ratios. The Gini coefficient provides a general
measure of dispersion for a given parameter, without considering
social stratification by income or race, with the coefficient ranging
from 0 (perfectly equal distribution) to 1 (extremely unequal). We
also adapt the concepts of quintile ratios and disparity ratios used in
public health (8) to energy use. Energy use disparity ratios by in-
come are computed as the ratio of the average energy attribute
(e.g., EUI) reported in the lowest-income quintile block groups
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(20% lowest) versus that reported in the highest-income quintile.
EUI disparity ratios by race are computed as the ratio of EUI in the
top 20% most racially diverse block groups (>80th percentile of
non-White population percentage) versus the 20% least racially
diverse block groups. Disparity ratios are closely related to differ-
ences across social groups, for example, a disparity ratio of 2.5
between the lowest- and highest-income groups indicates a 150%
difference with respect to the highest-income group.

Results
Energy Use Disparities by Income and Race.We evaluated inequality
considering several energy use metrics, including energy use per
household and per capita, as well as EUI and EUI/capita. The
results presented focus on EUI rather than energy use per
household to avoid floor area effects. EUI/capita showed similar
patterns as EUI (SI Appendix, Table S2).
Unpacking annual EUI disparities by income and race. We analyzed
annual EUI disparities by income and then by race within the
lowest-income block groups to further unpack the racial effect
from income. The analysis was conducted at the block group
level wherein the availability of income and racial structure data
for the years 2015 (for Tallahassee) and 2016 (for St. Paul)
matches with the companion energy use data obtained from
utilities for the same year(s) in these two cities. Fig. 1A dem-
onstrates structural income–race inequality patterns, wherein
highest-income quintile block groups are majority White (>50%
White population), while the lowest-income quintile block

groups have racial minorities (non-White) ranging from 16 to
∼95% (60% on average) in St. Paul. Fig. 1A shows distinct dif-
ferences across income strata by racial structure. In terms of
energy use, lowest-income groups have 24 to 45% lower con-
sumption per household (SI Appendix, Table S3), although they
have 27% higher EUI (Fig. 1B). Furthermore, a statistically
significant racial effect is seen in St. Paul within all except the
highest-income stratum (Fig. 1B), wherein an increase in non-
White population percentage is significantly correlated with
higher EUI. The impact of race may not be significant at the
highest-income stratum because that stratum is majority White
(i.e., very little racial diversity).
Fig. 1B represents the separation of race and income effects,

shown here with annual EUI. This implies that low-income racial
minority neighborhoods in St. Paul experience the highest dis-
parities. A race effect was not observed for annual EUI in Tal-
lahassee within any income strata.
Energy use disparity ratios were also computed by race and

income for annual electricity and gas use in the two cities (see
Materials and Methods). Electricity EUI disparity ratio by income
in St. Paul is 1.27 (Table 1), indicating block groups with the
lowest-income have ∼27% higher EUI compared to the highest-
income block groups. In Tallahassee, this disparity ratio is 1.66
(Table 1), which corresponds to a difference of 66% between the
lowest-income and the highest-income groups, more than double
that previously reported in US cities [i.e., ∼25% in Los Angeles
(23)] and that seen in St. Paul (this paper). Normalizing EUI by

Fig. 1. Unpacking the effect of race on EUI across income strata at the block group level. (A) Structural race effects are seen wherein the highest-income
block groups are predominantly White (blue dots), while the lowest-income block groups are the most racially diverse (red dots). (B) EUI inequality by race is
seen across income strata in which the slope of EUI versus the percentage of racial minorities (non-White) is significant and positive, except for the highest-
income stratum (>P80).
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population size (EUI/capita) finds an even higher disparity of
2.09 comparing the lowest versus highest income block groups in
Tallahassee (SI Appendix, Table S2). Annual EUI disparity ratios
by race within the lowest-income stratum, ranging from 1.09 to
1.40 in two cities (Table 2), are similar in magnitude compared to
the disparities by income.
Seasonal EUI disparity ratios by income. Annual energy use data can
mask disparities. To quantify EUI in a more granular way to
address seasonality and account for thermal comfort, we sepa-
rated EUI for heating/cooling homes (temperature sensitive)
from the rest (non-temperature sensitive). We also evaluated the
relationship of monthly EUI versus ambient temperature (40) to
delineate the apparent “turning point temperature”—that is, the
temperature below which homes turn on gas heat (SI Appendix,
Fig. S4). In St. Paul, the highest-income homes show a temperature
for the onset of heating energy use at 13.11 °C versus 11.95 °C for
the lowest-income block groups, indicating that low-income homes
are indeed sacrificing thermal comfort. This perhaps contributes
to the lower EUI for gas use of 0.87 (Table 1). This behavioral
phenomenon likely also extends to the cooling seasons; however,
it is not as visible because, unlike heating, not all homes in St. Paul
have air conditioners. The disparity ratio of temperature-sensitive
electricity EUI combining summer and winter is in the range of 2.67
to 2.79 in St. Paul (Table 1). This indicates that despite the thermal
comfort effect (SI Appendix, Fig. S4), low-income homes use more
than twice the electricity per square foot as high-income homes in
St. Paul (for heating and cooling). The disparity ratio by income for
non-temperature–sensitive EUI is not statistically different from 1 in
St. Paul, while it is significant and high (1.62 to 1.80) in Tallahassee.
Seasonal EUI disparity ratios by race among lowest-income quintile block
groups. By separating temperature-sensitive energy use, high
disparities by race are seen within the lowest-income block groups,
comparing top quintile non-White population block groups versus
the bottom quintile non-White (i.e., majority White) block groups.
These disparity ratios are high and statistically significant as confirmed
using two different approaches (see Materials and Methods), ranging
from 2.05 to 2.56 for temperature-sensitive electricity EUI in Talla-
hassee (Table 2). This indicates non-White poorer block groups’

seasonal electricity EUI is 105 to 156% higher for similar compari-
sons in Tallahassee. Indeed, a statistically significant race effect sep-
arate from income could be discerned in Tallahassee for temperature-
sensitive EUI in the lowest-income quintile (SI Appendix, Fig. S9),
further confirming the disparity ratio.
Overall, these results show that EUI derived from fine spatial

scale data and/or with the separation of temperature-sensitive
energy use reveal higher disparities by income (up to 2.67 in
St. Paul; Table 1) compared to what was reported previously
[∼1.25 in Los Angeles (23)]. These fine-scale data, for the first
time, also enable separating energy use disparities by race from
income (Fig. 1B) with EUI disparities by race in the lowest-
income stratum being as high as 2.56 in Tallahassee for
temperature-sensitive energy use (Table 2). EUI/capita revealed
similarly high disparities ratios (SI Appendix, Table S2).
Multiple social, ecological, infrastructural, and urban form drivers of
annual energy use. We conducted regression analysis to better
understand built environmental factors that influence annual
energy use beyond socioeconomics factors. We found that the
median household income of block groups and the percentage of
floor area occupied by single-family homes are moderately cor-
related, and both together explain the 34 and 20% variation in
annual gas and annual electricity EUI, respectively (SI Appendix,
Table S5). Beyond these two factors, the age of housing stock
emerges as significant for both gas and electricity EUI, while the
level of education and family size are significant for electricity
and gas EUI, respectively. The tree canopy effect is significant
only for electricity EUI. EUI/capita largely shows similar rela-
tionships (SI Appendix, Table S7). Future work is needed to
address the seasonal impact of tree canopy on seasonal energy
use and EUI at fine intraurban scales, which is beyond the scope
and focus of this paper. EUI and EUI/capita are more sensitive
than energy use per household in revealing relationships with
natural environment features (SI Appendix, Tables S5–S7).

Impact of Spatial Scale of Data Aggregation on Inequality Metrics.
We explored data aggregation effects on inequality metrics
(i.e., Gini coefficients and disparity ratios) using annual EUI and

Table 1. Disparity ratio of EUI by income at the block group level in St. Paul and Tallahassee

The tan highlights an exceptionally high and statistically different disparity ratio. The disparity ratio in [] is computed using the regression
equation approach.
*The income level for 20% population in the lowest-income block groups is $34,750/y and $22,652/y for St. Paul and Tallahassee, respectively. The 80th
percentile is $75,722/y and $82,885/y for St. Paul and Tallahassee, respectively.
†Not temperature-sensitive EUI is calculated based on the monthly EUI in months when no heating or cooling is needed. We scaled this monthly EUI to annual
by multiplying by 12. These months are May, September, and October in St. Paul and March, April, October, and November in Tallahassee.
‡Temperature-sensitive EUI is the additional energy use in heating and cooling months.
§The difference between two data groups was assessed using a t test and found statistically significant at 95% confidence level.
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household energy use as example parameters. During aggrega-
tion, energy use and population are composited from finer to
coarser spatial scales to compute relevant metrics, similar to
utility data reports provided to St. Paul. At higher spatial scales
of data aggregation, Gini coefficients, representing inequality in
EUI across different geographies within the city, decrease by up
to ∼50%, from 0.24 and 0.12 for electricity EUI in St. Paul and
from 0.20 to 0.15 in Tallahassee, when data were aggregated
from census block to census tract level (SI Appendix, Fig. S2A).
Such sharp and monotonical decreases in Gini coefficients are
also seen for energy use per household in both cities (SI Ap-
pendix, Fig. S2A). Given that a Gini of zero represents a perfectly
equal distribution, our results show a substantial apparent re-
duction in inequality because of data aggregation.
Annual EUI disparity ratios by race also changed substantially

(−19 to 22%) when going from census block to block group to
census tract levels (SI Appendix, Fig. S2B), while changes of
disparity ratios by income were smaller (−21 to 10%) (SI Ap-
pendix, Fig. S2C). Synthetic experiments using Tallahassee’s
premise-level data explored aggregation effects on disparity ra-
tios from the premise level to census block level, which were 4%
for income and −12 to 26% for racial disparities, respectively (SI
Appendix, Fig. S3). Unlike the Gini coefficient, disparity ratios
are not monotonically decreasing (i.e., both increases and de-
creases) when data are aggregated from one spatial scale to
another. A likely explanation is the divergent shape of the
probability density functions for non-White population percent-
age at the three spatial scales (SI Appendix, Figs. S7 and S8).

Quadrant Analysis Assessing Equity in Energy Program Participation
and Spatial Aspects of Program Design. A quadrant approach was
developed to quantify and prioritize energy program outreach
and investments in block groups based on the following goals: 1)
community-wide carbon mitigation, 2) reducing energy burden,
and 3) reducing social inequality by race and income. The
method bins all block groups in a city into four quadrants based
on pairs of variables chosen to reflect these three goals, with the
quadrant cutoffs established at each variable’s average. We ap-
plied the quadrant method to household participation in ESICE

programs (Fig. 2) and to the share ratio of investment (SI Ap-
pendix, Fig. S5).
Tallahassee and St. Paul show different patterns in the pre-

ferred quadrants to meet these goals. In St. Paul, greater par-
ticipation rates are seen in the desired quadrant (top right in
Fig. 2 A, Left) for carbon mitigation, that is, block groups with a
higher EUI and floor area relative to the city’s average (collec-
tively using 29% of total residential energy). Tallahassee’s energy
use is such that very few block groups exhibit both higher EUI
and higher square footage. The priority for carbon mitigation
shifts to the next quadrant (top left in Fig. 2 B, Right) with lower
EUI and higher square footage (collectively using 53% of total
residential energy) in which participation rates are high, signal-
ing good program outcomes. However, in both cities, participa-
tion rates in quadrants that prioritize reducing energy burden
(bottom-right quadrant in Fig. 2B) and social inequality (top-left
quadrant in Fig. 2C) focusing on disadvantaged groups are
mixed, helping identify areas where programs must be modified
to increase participation (SI Appendix, Fig. S5).
We also quantified the share of investment dollars alongside

the share of energy use as a good marker for allocating resources
for carbon mitigation and the share of investment by the per-
centage of households experiencing energy burden or belonging
to disadvantaged groups as a measure of social equity in in-
vestment (SI Appendix, Fig. S5). These metrics provide multiple
dimensions from which to assess equity. During the study period,
both St. Paul and Tallahassee allocated resources effectively and
proportionally to energy use for carbon mitigation but compar-
atively less so from a social equity perspective. These results are
sensitive to the cutoffs in developing the quadrants; results using
200% of the federal poverty line as the cutoff (often used in
social services) are shown in SI Appendix, Fig. S6 and are similar
to Fig. 2.
We spatially mapped block groups associated with the priority

quadrants for each of these three goals to understand whether
cities could focus on specific block groups to achieve all three
objectives. Fig. 3 spatially illustrates the inherent dichotomy be-
tween the goal of community-wide carbon mitigation and addressing
social inequality in both cities. This is due to structural income–race

Table 2. Disparity ratio of EUI by race in the lowest-income stratum at the block group level in St. Paul and Tallahassee

The tan highlights an exceptionally high and statistically different disparity ratio. The disparity ratio in [] is computed using the regression
equation approach.
*In St. Paul, we used the 80th and 20th percentile of non-White percentage within the lowest-income population quintile, corresponding to 75 and 43.5%
non-White population. In Tallahassee, we used the 70th and 30th percentile within the lowest-income population quintile, corresponding to 77 and 38.4%
non-White population.
†The difference between two data groups was assessed using a t test and found statistically significant at 95% confidence level.
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Fig. 2. Quadrant analysis for prioritizing energy sector investments for conservation and efficiency against three goals: 1) community-wide carbon miti-
gation, 2) reducing energy burden, and 3) addressing social inequality in low-income racial minorities. Household rebate participation rates (color dots) across
233 block groups in St. Paul (left column) and 133 block groups in Tallahassee (right column) are depicted in quadrants representing pairs of attributes. (A)
Quadrant to prioritize community-wide carbon mitigation based on a higher share of energy use (quadrants shown in blue in panel). (B) Quadrant to pri-
oritize reducing energy burden based on household energy cost and income (bottom-right quadrants). (C) Quadrant to prioritize equitable allocation of the
efficiency investment by race and income (top-left quadrants). Higher rebate participation rates are seen in the preferred quadrants for carbon mitigation
and to some extent for reducing energy burden but not for addressing inequality in disadvantaged population by race and income compared to the
quadrants with least disadvantaged population.
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inequality patterns wherein highest-income areas are majority White
with higher consumption, and lowest-income areas have lower con-
sumption, although a higher EUI (Fig. 1 and SI Appendix, Table S3).
Hence, separate programs with specific quantitative goals (drawn
from Fig. 3 and SI Appendix, Fig. S5) are indicated for cities to
achieve both outcomes.

Discussion
Overall, this paper shows that empirical energy use data with fine
spatial and temporal granularity, that is, fine spatial scale and the
separation of temperature-sensitive energy use, provide key in-
sights on social inequality in energy use.
Using fine-scale data, we find annual EUI disparity ratios by

income of 1.27 and 1.66, comparing lowest- versus highest-
income block groups (i.e., 27 and 66% higher), while previous
literature indicated an ∼25% difference.
Few previous studies have quantified racial disparities in EUI

separated from income. Our results reveal a racial effect distinct
from income even with annual energy use in St. Paul, wherein
non-White block groups (highest quintile non-White percent-
age; >75% non-White) in the lowest-income stratum reported
up to a further ∼40% higher annual EUI than majority White
block groups (>55% White), providing a first empirical estimate
of racial disparities.
Furthermore, our results show that separating temperature-

sensitive energy use can reveal significantly larger social in-
equalities. By separating the heating and cooling season’s EUI
from the rest, we find even higher disparity ratios (Tables 1 and
2). These disparity ratios for temperature-sensitive EUI corre-
spond to maximum differences of 167% by income in St. Paul
and 156% for EUI by race in the lowest-income stratum in
Tallahassee. These differences are nearly five times the magni-
tude of energy use disparities previously known [e.g., 25% dif-
ference by income reported in Los Angeles (23)]. Given such
high temperature-sensitive disparities, low-income racial minor-
ities will be even more vulnerable to the significant anticipated
temperature changes due to climate change (26).
Overall, both cities report up to a factor of five larger in-

equality in certain energy use metrics. However, energy prices
and energy burden (∼5% on average and ranging from ∼2 to 20%
in both cities) are similar (SI Appendix). In St. Paul, the heating
season is important wherein racial disparities in temperature-
sensitive gas EUI in the lowest-income stratum are seen. In Tal-
lahassee, the cooling season is very long; EUI disparity by income
becomes emergent in the non-temperature–sensitive EUI, while
the race effect separated from income was observed only for the
temperature-sensitive EUI and only in the lowest-income stratum
(SI Appendix, Fig. S9). These results indicate methods developed in
this paper can unpack and make visible important social disparities.
Future studies are needed to explore potential causes of intercity
differences, which is beyond the scope of this paper. It is likely that
accessing finer spatial and temporal-scale data in other cities will
reveal similar levels of disparities seen here, given systemic income–
race relationships (Fig. 1A) are likely widespread across the United
States and other countries, where religion, caste, and ethnicity may
play a role. Electric utilities by themselves will be unable to address
the structural inequality shown in Fig. 1A. However, recognizing
that income plays a large role and that race appears to play a role
even within income groups can stimulate community conversa-
tions. Furthermore, utility investment can be realigned to ad-
dress income effects, while outreach can be customized to reach
racial minorities equitably in culturally sensitive ways.
As cities seek to understand inequality in energy use, they

must be mindful of the spatial scale at which data are aggregated,
which has bearing on the magnitude of inequality computed. Our
paper provides an empirical exploration of the impact of the
spatial scale of data aggregation on energy inequality metrics. We
find both Gini coefficients and disparity ratios are susceptible to

data aggregation effects when aggregating energy use data from
the block to census tract scale (SI Appendix, Fig. S2). While utilities
are aggregating data to comply with data privacy regulations,
we suggest that cities and utilities report explicitly at what scale
they are aggregating data, recognizing that it may impact energy
inequality metrics. Alternatively, the census block group could be
used as a consistent scale or cities could invest in more granular
surveys.
Last, quadrant analysis using energy use and EUI metrics along

with income, race, and floor area (Fig. 2) can help cities identify,
quantify, and prioritize their investment relative to different goals,
that is, carbon mitigation, reducing energy burden, and reducing
energy use inequality. If quadrant analysis demonstrates cities
underinvest in low-income and racially diverse neighborhoods or
that participation rates are low (Fig. 2C), it can stimulate redi-
recting investments and redesigning programs from a procedural
equity perspective (15, 16) by engaging those neighborhoods in
design and implementation. Thus, our analysis focusing on dis-
tributional justice can be combined with procedural equity, con-
tributing to the overarching goal of energy justice (15, 16).
Spatial analysis of quadrants demonstrates that block groups

to be prioritized for community-wide carbon mitigation have
very little spatial overlap (12% and 7% for St. Paul and Talla-
hassee, respectively) with those block groups to be prioritized to
address social inequality. Therefore, it is difficult to achieve both
community-wide carbon mitigation and social equality in one
program by focusing on sweet spots of intersection. This finding
indicates that cities must design dual programs to achieve both
goals, since their focus will necessarily be on different neigh-
borhoods. Programs addressing social equity would focus on
reducing disparity in low-income and racially diverse neighbor-
hoods. In contrast, programs addressing carbon mitigation
through a focus on high energy users (e.g., higher income with
larger floor area) could utilize the concept of sufficiency (36),
highlighting the potential of achieving well-being with compar-
atively lower energy use (41) (e.g., smaller homes, conservation
behaviors, and lifestyle changes).
Overall, with fine-scale spatial data on energy use, program

participation, and investment becoming increasingly available
from utilities and smart grid programs, our paper suggests that
cities can directly evaluate these data to determine baseline
measures of inequality to track progress. Empirical data, with the
separation of temperature-sensitive EUI from the annual total,
can reveal important features of inequality at fine urban scales
that are not readily captured by current models. Indeed, models
themselves will be further refined with more fine-scale energy
use data coupled with social–ecological–infrastructural–urban
parameters. Furthermore, fine-scale spatial data on energy use
must be evaluated together with data on investment, potentially
using methods developed in this paper, to chart quantitative goals
and track progress for both carbon mitigation and social equity.

Materials and Methods
Electric utilities provided residential energy use data and ESICE data at the
census block level in St. Paul and the premise level in Tallahassee under
nondisclosure agreements. Nondisclosure agreements ensured data privacy
in compliance with state and federal regulations. Energy use data for St. Paul
are anonymized and aggregated by the utility to the census block level and
meet the 15/15 criteria (i.e., the aggregated sample must have more than 15
customers and no single customer’s data may comprise more than 15% of
the total aggregated data). Such aggregated data do not constitute human
subject research and do not require institutional review board (IRB) ap-
proval. Data for Tallahassee are already gathered by the utilities and are in
the public record; therefore, they are exempt from IRB (42). We spatially
joined energy use and investment data with available sociodemographic
(43), ecological (44, 45), infrastructural (46, 47), and urban form variables
(39) at three spatial scales, that is, census block, block group, and census
tract, for further analysis (SI Appendix). Energy use data years were 2015
(Tallahassee) and 2016 (St. Paul), which matched with years during which
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sociodemographic data (e.g., race and income) were gathered for 233 block
groups in St. Paul and 133 in Tallahassee.

We developed innovative methods to unpack the effects of income and
race on various energy usemetrics (i.e., EUI, EUI/capita, energy use/household,
and energy use/capita), with the separation of temperature-sensitive energy

use from the annual total. Except for spatial scale exploration, energy use
metrics were calculated at the block group level. For example, the EUI of a
block group was calculated by dividing the sum of all households’ energy use
with the sum of these households’ floor area in this block group. When
separating temperature-sensitive energy use, we first calculated the average

A B

C D

E F

Fig. 3. Little overlap in block groups that would be prioritized for community-wide carbon mitigation (highlighted in green in A for St. Paul and B for
Tallahassee), reducing energy burden (highlighted in blue in C for St. Paul and D for Tallahassee), and equitable energy sector investment for conservation
and efficiency by race and income (highlighted in red in E for St. Paul and F for Tallahassee).
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monthly energy use in non-heating/cooling months in a block group as the
baseline (not temperature sensitive). The additional energy use during all heating
and coolingmonths was noted to be temperature sensitive. Block groups wherein
buildings were served by district energy systems in St. Paul were excluded in
the analysis to avoid the impact of different heating/cooling technologies.

EUI disparity ratio by income, DREUI
inc , was calculated by dividing the av-

erage EUI reported in block groups with median income lower than the 20th
percentile income (P20) (by population) with the average EUI in block groups
with median income higher than the 80th percentile (P80) (shown below).
The EUI disparity ratio across the two income quintiles are shown in Eq. 1.

DREUI
inc = Avg. EUIinc<P20

Avg. EUIinc>P80
. [1]

Student’s t test was used to assess statistical differences in the two compo-
nents that constitute the ratio.

EUI disparity ratio by race in the lowest-income stratum (bottom income
quintile), DREUI

race,lowest income, was computed by separating the lowest-income

group further into quintiles based on non-White population percentage in St.
Paul. Quintiles (80th and 20th percentiles on non-White population) in the
lowest-income group in St. Paul enabled comparing 10 block groups each
with percentage cutoffs of non-White population at >75% non-White
and <43.5% non-White, representing the fifth-most and fifth-least racially
diverse block groups, respectively. The EUI disparity ratio by race in the low-
income quintile in St. Paul was computed using Eq. 2:

DREUI
race,lowest income = Avg.EUINon−white>75%&inc<P20

Avg. EUINon−white<43.5%&inc<P20
. [2]

For Tallahassee, the sample size of block groups in the lowest-income stratum

was only 27, for which dividing further into quintiles (80 to 20) would yield
small numbers of block groups; hence, we used a wider 70th and 30th
percentile non-White population as cutoff, corresponding to >77% non-
White and <38.4%, respectively.

Because of the relatively small sample sizes by racial quintile within the
lowest-income stratum, we also confirmed the disparity ratios by regres-
sion analysis, that is, utilizing the relationship between EUI and non-White
population percentage across all block groups within the lowest-income
group. This can be seen, for example, in the statistically significant re-
gression illustrated in the red line, lowest income in Fig. 1B and SI Ap-
pendix, Fig. S9. This allowed the consideration of racial effect across a
larger number of block groups; we computed EUI in the lowest and
highest non-White percentage quintiles using the regression equation and
computed the disparity ratios using this approach. The results from both
approaches were similar in magnitude and shown in tables and affirmed
our findings.

Additional method details are in SI Appendix.

Data Availability. Data cannot be shared. (The sharing of raw data is re-
stricted by nondisclosure agreements established between the research
team and the energy utilities, developed to ensure data privacy and se-
curity. The aggregated data at the census block group level used in the
analyses can be made available to other researchers upon contacting the
corresponding author.)
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